Theo đề bài, ta xét cấp số nhân \(\left( {{u_n}} \right)\) có 7 số hạng. Ta suy ra \(\left\{ \begin{array}{l}{u_4} = 2\\{u_7} = 32{u_2}\end{array} \right. Hướng dẫn trả lời Giải bài 41 trang 56 sách bài tập toán 11 – Cánh diều – Bài 3. Cấp số nhân. Một cấp số nhân có 7 số hạng, số hạng thứ tư bằng 2,…
Đề bài/câu hỏi:
Một cấp số nhân có 7 số hạng, số hạng thứ tư bằng 2, số hạng thứ bảy gấp 32 lần số hạng thứ hai. Tìm các số hạng của cấp số nhân đó.
Hướng dẫn:
Theo đề bài, ta xét cấp số nhân \(\left( {{u_n}} \right)\) có 7 số hạng.
Ta suy ra \(\left\{ \begin{array}{l}{u_4} = 2\\{u_7} = 32{u_2}\end{array} \right.\).
Sử dụng công thức \({u_n} = {u_1}{q^{n – 1}}\) để tìm công bội \(q\) và số hạng đầu \({u_1}\). Từ đó, ta có thể tìm được các số hạng còn lại của cấp số nhân này.
Lời giải:
Xét cấp số nhân \(\left( {{u_n}} \right)\) có 7 số hạng. Theo đề bài, vì số hạng thứ tư bằng 2 và số hạng thứ bảy gấp 32 lần số hạng thứ hai, ta suy ra
\(\left\{ \begin{array}{l}{u_4} = 2\\{u_7} = 32{u_2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^3} = 2\\{u_1}{q^6} = 32{u_1}q\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^3} = 2\\{q^5} = 32\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^3} = 2\\q = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{1}{4}\\q = 2\end{array} \right.\).
Vậy \({u_1} = \frac{1}{4}\) và \(q = 2\). Suy ra:
\({u_2} = {u_1}q = \frac{1}{4}.2 = \frac{1}{2}\);
\({u_3} = {u_2}q = \frac{1}{2}.2 = 1\);
\({u_5} = {u_4}q = 2.2 = 4\);
\({u_6} = {u_5}q = 4.2 = 8\);
\({u_7} = {u_6}q = 8.2 = 16\).
Vậy bảy số hạng của cấp số nhân là: \(\frac{1}{4}\); \(\frac{1}{2}\); \(1\); 2; 4; 8; 16.