Trang chủ Lớp 11 Toán lớp 11 SBT Toán 11 - Cánh diều Bài 4 trang 94 SBT toán 11 – Cánh diều: Cho tứ...

Bài 4 trang 94 SBT toán 11 – Cánh diều: Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, CD. Chứng minh rằng bốn điểm M, N, C, D

Giả sử 4 điểm \(M\), \(N\), \(C\), \(D\) cùng nằm trong một mặt phẳng. Từ đó chứng minh rằng \(M \in \left( {BCD} \right)\). Hướng dẫn cách giải/trả lời Giải bài 4 trang 94 sách bài tập toán 11 – Cánh diều – Bài 1. Đường thẳng và mặt phằng trong không gian. Cho tứ diện \(ABCD\). Gọi \(M,{\rm{ }}N\) lần lượt là trung điểm của \(AB,{\rm{ }}CD\)….

Đề bài/câu hỏi:

Cho tứ diện \(ABCD\). Gọi \(M,{\rm{ }}N\) lần lượt là trung điểm của \(AB,{\rm{ }}CD\). Chứng minh rằng bốn điểm \(M,{\rm{ }}N,{\rm{ }}C,{\rm{ }}D\) không cùng nằm trong một mặt phẳng.

Hướng dẫn:

Giả sử 4 điểm \(M\), \(N\), \(C\), \(D\) cùng nằm trong một mặt phẳng.

Từ đó chứng minh rằng \(M \in \left( {BCD} \right)\), suy ra \(A \in \left( {BCD} \right)\) và suy ra điều vô lí.

Lời giải:

Do \(N\) là trung điểm của \(BC\), nên 4 điểm \(B\), \(N\), \(C\), \(D\) cùng nằm trong mặt phẳng.

Giả sử 4 điểm \(M\), \(N\), \(C\), \(D\) cùng nằm trong một mặt phẳng.

Điều này có nghĩa là \(M \in \left( {NCD} \right)\).

Do bốn điểm \(B\), \(N\), \(C\), \(D\) cùng nằm trong mặt phẳng, ta suy ra \(M \in \left( {BCD} \right)\).

Điểm \(M\) và điểm \(B\) cùng nằm trong mặt phẳng \(\left( {BCD} \right)\), nên \(BM \subset \left( {BCD} \right)\).

Mặt khác, do \(M\) là trung điểm của \(AB\), nên \(A \in BM\).

Suy ra \(A \in \left( {BCD} \right)\). Điều này là vô lí do \(ABCD\) là tứ diện nên bốn điểm \(A\), \(B\), \(C\), \(D\) không cùng nằm trong một mặt phẳng.