Trang chủ Lớp 11 Toán lớp 11 SBT Toán 11 - Cánh diều Bài 26 trang 21 SBT toán 11 – Cánh diều: Cho n...

Bài 26 trang 21 SBT toán 11 – Cánh diều: Cho n là số nguyên dương lớn hơn 2. Chọn ngẫu nhiên hai số nguyên dương từ tập hợp 1; 2; 3; . . . ; 2n; 2n + 1 .

Xác định số phần tử của không gian mẫu. Xác định số phần tử của biến cố. Giải chi tiết Giải bài 26 trang 21 sách bài tập toán 11 – Cánh diều – Bài tập cuối Chương 5. Cho n là số nguyên dương lớn hơn 2. Chọn ngẫu nhiên hai số nguyên dương từ tập hợp\(\left\{ {1;…

Đề bài/câu hỏi:

Cho n là số nguyên dương lớn hơn 2. Chọn ngẫu nhiên hai số nguyên dương từ tập hợp\(\left\{ {1;{\rm{ }}2;{\rm{ }}3;{\rm{ }}…;{\rm{ }}2n;{\rm{ }}2n{\rm{ }} + {\rm{ }}1} \right\}.\) Tính xác suất để hai số được chọn có tích là số chẵn.

Hướng dẫn:

– Xác định số phần tử của không gian mẫu.

– Xác định số phần tử của biến cố.

Lời giải:

Ta thấy từ tập hợp\(\left\{ {1;{\rm{ }}2;{\rm{ }}3;{\rm{ }}…;{\rm{ }}2n;{\rm{ }}2n{\rm{ + }}1} \right\}\) có \(2n{\rm{ }} – {\rm{ }}1\) số nguyên dương lớn hơn 2. Mỗi cách chọn ngẫu nhiên hai số nguyên dương từ \(2n{\rm{ }} – {\rm{ }}1\) số nguyên dương cho ta một tổ hợp chập 2 của \(2n{\rm{ }} – {\rm{ }}1\) phần tử. Do đó, không gian mẫu Ω gồm các phần tử chập 2 của \(2n{\rm{ }} – {\rm{ }}1\) phần tử và:

\(n\left( \Omega \right) = C_{2n – 1}^2 = \frac{{\left( {2n – 1} \right)!}}{{2!\left( {2n – 3} \right)!}} = \frac{{\left( {2n – 1} \right)\left( {2n – 2} \right)}}{2} = \left( {2n – 1} \right)\left( {n – 1} \right).\)

Xét biến cố A: “Hai số được chọn có tích là số chẵn”.

Suy ra biến cố \(\bar A\): “Hai số được chọn có tích là số lẻ”.

Ta thấy hai số được chọn có tích là số lẻ khi và chỉ khi cả hai số đó đều là số lẻ.

Trong \(2n{\rm{ }} – {\rm{ }}1\) số nguyên dương lớn hơn 2 thì có \(n\) số nguyên dương lẻ.

Do đó, số các kết quả thuận lợi cho biến cố \(\bar A\) là:

\(n\left( {\bar A} \right) = C_n^2 = \frac{{n!}}{{2!\left( {n – 2} \right)!}} = \frac{{n\left( {n – 1} \right)}}{2}.\)

Xác suất của biến cố \(\bar A\) là: \(P\left( {\bar A} \right) = \frac{{n\left( {\bar A} \right)}}{{n\left( \Omega \right)}} = \frac{{\frac{{n\left( {n – 1} \right)}}{2}}}{{\left( {2n – 1} \right)\left( {n – 1} \right)}} = \frac{n}{{2\left( {2n – 1} \right)}}.\)

Suy ra xác suất của biến cố \(A\) là: \(P\left( A \right) = 1 – P\left( {\bar A} \right) = 1 – \frac{n}{{2\left( {2n – 1} \right)}} = \frac{{3n – 2}}{{2\left( {2n – 1} \right)}}.\)