Trang chủ Lớp 11 Toán lớp 11 SBT Toán 11 - Cánh diều Bài 12 trang 46 SBT toán 11 – Cánh diều: Cho dãy...

Bài 12 trang 46 SBT toán 11 – Cánh diều: Cho dãy số u_n biết u_n = an + 2/n + 1 với a là số thực. Tìm a để dãy số u_n

Xét hiệu \(H = {u_{n + 1}} – {u_n}\). Để dãy số \(\left( {{u_n}} \right)\) tăng thì \(H > 0\) với \(\forall n \in {\mathbb{N}^*}\). Hướng dẫn giải Giải bài 12 trang 46 sách bài tập toán 11 – Cánh diều – Bài 1. Dãy số. Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_n} = \frac{{an + 2}}{{n + 1}}\) với \(a\) là số thực….

Đề bài/câu hỏi:

Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_n} = \frac{{an + 2}}{{n + 1}}\) với \(a\) là số thực. Tìm \(a\) để dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.

Hướng dẫn:

Xét hiệu \(H = {u_{n + 1}} – {u_n}\). Để dãy số \(\left( {{u_n}} \right)\) tăng thì \(H > 0\) với \(\forall n \in {\mathbb{N}^*}\).

Giải bất phương trình với ẩn \(a\), rồi kết luận.

Lời giải:

Xét hiệu:

\(H = {u_{n + 1}} – {u_n} = \frac{{a\left( {n + 1} \right) + 2}}{{\left( {n + 1} \right) + 1}} – \frac{{an + 2}}{{n + 1}} = \frac{{an + a + 2}}{{n + 2}} – \frac{{an + 2}}{{n + 1}}\)

\( = \frac{{\left( {an + a + 2} \right)\left( {n + 1} \right)}}{{\left( {n + 1} \right)\left( {n + 2} \right)}} – \frac{{\left( {an + 2} \right)\left( {n + 2} \right)}}{{\left( {n + 1} \right)\left( {n + 2} \right)}} = \frac{{\left[ {a{n^2} + \left( {2a + 2} \right)n + a + 2} \right] – \left[ {a{n^2} + \left( {2a + 2} \right)n + 4} \right]}}{{\left( {n + 1} \right)\left( {n + 2} \right)}}\)

\( = \frac{{a – 2}}{{\left( {n + 1} \right)\left( {n + 2} \right)}}\)

Để dãy số tăng, ta cần \(H > 0\) với \(\forall n \in {\mathbb{N}^*}\).

Ta có: \(H > 0 \Leftrightarrow \frac{{a – 2}}{{\left( {n + 1} \right)\left( {n + 2} \right)}} > 0 \Leftrightarrow a – 2 > 0 \Leftrightarrow a > 2\).

Vậy với \(a > 2\) thì dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{an + 2}}{{n + 1}}\) là dãy số tăng.