Trang chủ Lớp 11 Toán lớp 11 Chuyên đề học tập Toán 11 - Kết nối tri thức Bài 1.27 trang 33 Chuyên đề học tập Toán 11 Kết nối...

Bài 1.27 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức: Trong mặt phẳng tọa độ Oxy, cho đường thẳng Δ : 2x – y – 1 = 0 và hai điểm A – 1; 2

Dựa vào kiến thức đã học về phép đối xứng trục để làm. Phân tích, đưa ra lời giải Giải bài 1.27 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức – Bài tập cuối chuyên đề 1 – Chuyên đề học tập Toán 11 Kết nối tri thức. Trong mặt phẳng tọa độ Oxy, cho đường thẳng \(\Delta :{\rm{ }}2x{\rm{ }}-{\rm{ }}y{\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}0\…

Đề bài/câu hỏi:

Trong mặt phẳng tọa độ Oxy, cho đường thẳng \(\Delta :{\rm{ }}2x{\rm{ }}-{\rm{ }}y{\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}0\) và hai điểm \(A\left( {-{\rm{ }}1;{\rm{ }}2} \right),{\rm{ }}B\left( {-{\rm{ }}3;{\rm{ }}4} \right).\)

a) Tìm tọa độ điểm \(A’\) là ảnh của điểm A qua phép đối xứng trục \(\Delta \)

b) Xác định điểm M thuộc đường thẳng \(\Delta \) sao cho MA + MB đạt giá trị nhỏ nhất.

Hướng dẫn:

Dựa vào kiến thức đã học về phép đối xứng trục để làm

Lời giải:

a) Ta có: \(2{\rm{ }}.{\rm{ }}\left( {-{\rm{ }}1} \right){\rm{ }}-{\rm{ }}2{\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}-{\rm{ }}5{\rm{ }} \ne {\rm{ }}0\) nên \(A\left( {-{\rm{ }}1;{\rm{ }}2} \right)\) không thuộc ∆.

Gọi H là chân đường vuông góc hạ từ A xuống ∆.

Vì H thuộc ∆ nên \(H\left( {x;2x-1} \right)\). Ta có: \(\overrightarrow {AH} = (x + 1;2x – 3)\), vectơ chỉ phương của đường thẳng ∆ là \(\overrightarrow {{u_\Delta }} = \left( {1;\,2} \right)\)

Vì AH vuông góc với ∆ nên \(\overrightarrow {AH} .\overrightarrow {{u_\Delta }} = 0 \Leftrightarrow \left( {x + 1} \right).1 + \left( {2x – 3} \right).2 = 0 \Rightarrow x = 1\)

Từ đó suy ra H(1; 1).

Vì A’ là ảnh của điểm A qua phép đối xứng trục ∆ nên AA’ vuông góc với ∆ tại H và H là trung điểm của AA’.

Suy ra \(\left\{ {\begin{array}{*{20}{l}}{{x_{A’}} = 2{x_H} – {x_A} = 2.1 – \left( { – 1} \right) = 3}\\{{y_{A’}} = 2{y_H} – {y_A} = 2.1 – 2 = 0}\end{array}} \right.\)

Vậy A'(3; 0).

b)

Ta có: \(2.\left( {-3} \right)-4-1{\rm{ }} = -11;{\rm{ 2}}.\left( {-1} \right)-2-1 = -5\) và \(\left( {-11} \right).\left( {-5} \right) = 55 > 0\)nên hai điểm A và B nằm về một phía của đường thẳng ∆.

Vì M thuộc \(\Delta \) và A và A’ đối xứng nhau qua \(\Delta \) nên MA = MA’ và A’ và B nằm về hai phía của đường thẳng \(\Delta \).

Do đó, MA + MB = MA’ + MB đạt giá trị nhỏ nhất khi M là giao điểm của A’B và \(\Delta \).

Ta có: \(\overrightarrow {A’B} = ( – 6;4)\), suy ra \(\overrightarrow {{n_{A’B}}} = (2;3)\) là một vectơ pháp tuyến của đường thẳng A’B. Phương trình đường thẳng A’B là \(2\left( {x-3} \right) + 3\left( {y-0} \right) = 0\) hay \(2x + 3y-6 = 0.\)

Tọa độ giao điểm M của A’B và ∆ là nghiệm của hệ phương trình

\(\left\{ {\begin{array}{*{20}{l}}{2x – y – 1 = 0}\\{2x + 3y – 6 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = \frac{9}{8}}\\{y = \frac{5}{4}}\end{array}} \right.} \right.\)

Vậy \(M\left( {\frac{9}{8};\,\frac{5}{4}} \right)\).