Hướng dẫn giải Giải câu hỏi 2 trang 42 SGK Vật Lí 10 – Giải mục IV trang 42 – 43 SGK Vật Lí 10.
Câu hỏi/Đề bài:
1. Biết độ dịch chuyển trong chuyển động thẳng biến đổi đều có độ lớn bằng diện tích giới hạn đồ thị (v – t) trong thời gian t của chuyển động. Hãy chứng minh rằng công thức tính độ lớn của độ dịch chuyển trong chuyển động thẳng biến đổi đều là:
\(d = {v_0}t + \frac{1}{2}a{t^2}\) (9.4)
2. Từ công thức (9.2) và (9.4) chứng minh rằng:
\({v^2} – v_0^2 = 2.a.d\) (9.5)
Lời giải:
1.
Độ dịch chuyển có độ lớn bằng diện tích của hình thang vuông có đường cao là t và các đáy có độ lớn v0, v.
Diện tích hình thang: \(d = {s_{ht}} = \frac{{(v + {v_0}).t}}{2} = \frac{1}{2}{v_0}t + \frac{1}{2}vt\) (1)
Lại có: \(a = \frac{{v – {v_0}}}{t} \Rightarrow v = at + {v_0}\) (2)
Thay (2) vào (1) ta được:
\(d = \frac{1}{2}{v_0}t + \frac{1}{2}(at + {v_0})t = \frac{1}{2}{v_0}t + \frac{1}{2}a{t^2} + \frac{1}{2}{v_0}t\)
\( \Rightarrow d = {v_0}t + \frac{1}{2}a{t^2}\) (đpcm)
2.
Ta có: \({v_t} = {v_0} + at\) (9.2)
\(d = {v_0}t + \frac{1}{2}a{t^2}\) (9.4)
+ Bình phương 2 vế của (9.2) ta được:
\({v^2} = v_0^2 + 2{v_0}.at + {a^2}{t^2} = v_0^2 + a(2{v_0}t + a{t^2})\) (1)
+ Từ (9.4) ta có:
\(2{\rm{d}} = 2{v_0}t + a{t^2}\) (2)
Thay (2) vào (1) ta được:
\({v^2} = v_0^2 + a.2{\rm{d}} \Leftrightarrow {v^2} – v_0^2 = 2{\rm{a}}.d\) (đpcm)