Tính \(x = \cos \widehat {xOM}\) và \(y = \sin \widehat {xOM}\) Tính tích \(x. y\. Hướng dẫn giải Giải bài 3.18 trang 40 sách bài tập toán 10 – Kết nối tri thức với cuộc sống – Bài tập cuối Chương 3. Tích hoành độ và tung độ của điểm M bằng…
Đề bài/câu hỏi:
Trên mặt phẳng tọa độ \(Oxy,\) lấy điểm \(M\) thuộc nửa đường tròn đơn vị sao cho \(\widehat {xOM} = {135^ \circ }.\) Tích hoành độ và tung độ của điểm \(M\) bằng
A. \(\frac{1}{{2\sqrt 2 }}.\)
B. \(\frac{1}{2}\)
C. \( – \frac{1}{2}\)
D. \( – \frac{1}{{2\sqrt 2 }}.\)
Hướng dẫn:
– Tính \(x = \cos \widehat {xOM}\) và \(y = \sin \widehat {xOM}\)
– Tính tích \(x.y\)
Lời giải:
Ta có: \(\left\{ {\begin{array}{*{20}{c}}{x = \cos \widehat {xOM}}\\{y = \sin \widehat {xOM}}\end{array}\,\, \Rightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = \cos {{135}^ \circ } = \frac{{ – \sqrt 2 }}{2}}\\{y = \sin {{135}^ \circ } = \frac{{\sqrt 2 }}{2}}\end{array}} \right.} \right.\,\, \Rightarrow \,\,M\left( {\frac{{ – \sqrt 2 }}{2};\frac{{\sqrt 2 }}{2}} \right)\)
Tích hoành độ và tung độ điểm \(M\) là: \(\frac{{ – \sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} = \frac{{ – 1}}{2}.\)
Chọn C.