Viết các bất phương trình của bài toán trên. Xác định miền nghiệm của hệ bất phương trình đó. Trả lời Giải bài 2.29 trang 28 sách bài tập toán 10 – Kết nối tri thức với cuộc sống – Bài tập cuối Chương 2. Giả sử một người ăn kiêng cần được cung cấp ít nhất 300 calo,…
Đề bài/câu hỏi:
Giả sử một người ăn kiêng cần được cung cấp ít nhất 300 calo, 36 đơn vị vitamin A và 90 đơn vị vitamin C mỗi ngày từ hai loại đồ uống / và //. Mỗi cốc đồ uống / cung cấp 60 calo, 12 đơn vị vitamin A và 10 đơn vị vitamin C.
Mỗi cốc đồ uống // cung cấp 60 calo, 6 đơn vị vitamin A và 30 đơn vị vitamin C. Biết rằng một cốc đồ uống / có giá 12 nghìn đồng và một cốc đồ uống // có giá 15 nghìn đồng.
a) Gọi x và y tương ứng là số cốc đồ uống / và //. Viết các phương trình biểu thị các điều kiện của bài toán thành một hệ bất phương trình và xác định miền nghiệm của hệ đó.
b) Gọi F (nghìn đồng) là số tiền phải trả cho x cốc đồ uống / và y là số tiền phải trả cho y cốc đồ uống //. Hãy biểu diễn F theo x và y.
c) Biết rằng F đạt giá trị nhỏ nhất trên miền nghiệm tìm được ở câu a tại một trong các đỉnh của miền nghiệm, tìm giá trị nhỏ nhất đó. Từ đó suy ra người đó cần uống bao nhiêu cốc loại / và loại // để chi phí là nhỏ nhất. mà vẫn đáp ứng được yêu cầu hằng ngày.
Hướng dẫn:
– Viết các bất phương trình của bài toán trên.
– Xác định miền nghiệm của hệ bất phương trình đó.
– Viết biểu thức về số tiền phải trả cho 2 loại đồ uống.
– Tính giá trị nhỏ nhất về số tiền phải trả cho 2 loại đồ uống đo.
Lời giải:
a) Gọi x và y tương ứng là số cốc đồ uống / và //.
Điều kiện: \(x \ge 0;\,\,y \ge 0.\)
Số calo cần cung cấp cho người ăn kiêng từ hai loại đồ uống / và // là: \(60x + 60y \ge 300\,\, \Leftrightarrow \,\,x + y \ge 5.\)
Số vitamin A cần cung cấp cho người ăn kiêng từ hai loại đồ uống / và // là: \(12x + 6y \ge 36\,\, \Leftrightarrow \,\,2x + y \ge 6.\)
Số vitamin C cần cung cấp cho người ăn kiêng từ hai loại đồ uống / và // là: \(10x + 30y \ge 90\,\, \Leftrightarrow \,\,x + 3y \ge 9.\)
Ta có hệ bất phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x \ge 0}\\{y \ge 0}\\{x + y \ge 5}\\{2x + y \ge 6}\\{x + 3y \ge 9}\end{array}.} \right.\)
Miền nghiệm của bất phương trình \(d:x \ge 0\) là nửa mặt phẳng bờ \(d\) chứa điểm \(\left( {1;0} \right).\)
Miền nghiệm của bất phương trình \({d_1}:y \ge 0\) là nửa mặt phẳng bờ \({d_1}\) chứa điểm \(\left( {0;1} \right).\)
Miền nghiệm của bất phương trình \(x + y \ge 5\) là nửa mặt phẳng bờ \({d_2}:x + y = 5\) không chứa gốc tọa độ \(O\left( {0;0} \right).\)
Miền nghiệm của bất phương trình \(2x + y \ge 6\) là nửa mặt phẳng bờ \({d_3}:2x + y = 6\) không chứa gốc tọa độ \(O\left( {0;0} \right).\)
Miền nghiệm của bất phương trình \(x + 3y \ge 9\) là nửa mặt phẳng bờ \({d_4}:x + 3y = 9\) không chứa gốc tọa độ \(O\left( {0;0} \right).\)
Miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x \ge 0}\\{y \ge 0}\\{x + y \ge 5}\\{2x + y \ge 6}\\{x + 3y \ge 9}\end{array}} \right.\)là miền không bị gạch với \(A\left( {0;6} \right),\,\,B\left( {1;4} \right),\,\,C\left( {3;2} \right),\,\,D\left( {9;0} \right).\)
b) Số tiền phải trả cho hai loại đồ uống / và // là: \(F\left( {x;y} \right) = 12x + 15y\) (nghìn đồng).
c) Ta có: \(F\left( {0;6} \right) = 12.0 + 15.6 = 90,\,\,F\left( {1;4} \right) = 12.1 + 15.4 = 72,\)
\(F\left( {3;2} \right) = 12.3 + 15.2 = 66,\,\,F\left( {9;0} \right) = 12.9 + 15.0 = 108.\)
\( \Rightarrow \) Giá trị nhỏ nhất của \(F\) là \(F\left( {3;2} \right) = 66.\)
Vậy người đó cần uống 3 cốc đồ uống loại / và 2 cốc đồ uống loại // để đáp úng yêu cầu đặt ra hàng ngày.