Hướng dẫn giải Giải bài 15 trang 73 sách bài tập toán 10 – Kết nối tri thức với cuộc sống – Bài tập ôn tập cuối năm. Chuyển động của một vật thể trong khoảng thời gian 180 phút được thể hiện trong mặt phẳng toạ độ….
Đề bài/câu hỏi:
Chuyển động của một vật thể trong khoảng thời gian 180 phút được thể hiện trong mặt phẳng toạ độ. Theo đó, tại thời điểm \(t(0 \le t \le 180)\), vật thể có vị trí toạ độ \(\left( {4\cos t^\circ ;{\rm{ }}3\sin t^\circ } \right)\).
a) Tìm vị trí ban đầu và vị trí kết thúc của vật thể.
b) Tìm quỹ đạo chuyển động của vật thể.
Lời giải:
a) Vị trí ban đầu của vật thể ứng với t = 0 => Vật thể ở vị trí có toạ độ là \({A_1} = \left( {4\cos 0^\circ ;{\rm{ }}3\sin 0^\circ } \right) = \left( {4;0} \right).\)
Vị trí kết thúc của vật thể ứng với t = 180 => Vật thể ở vị trí có toạ độ là \({A_2} = \left( {4\cos {{180}^ \circ };{\rm{ }}3\sin {{180}^ \circ }} \right) = \left( { – 4;0} \right).\)
b) Từ đẳng thức \(\left( {4\cos t^\circ ;{\rm{ }}3\sin t^\circ } \right)\) là toạ độ của vật thể M, ta có \({\left( {\frac{{{y_M}}}{3}} \right)^2} + {\left( {\frac{{{x_M}}}{4}} \right)^2} = 1 \Leftrightarrow \frac{{x_M^2}}{{16}} + \frac{{y_M^2}}{9} = 1\)
Do đó vật thể chuyển động trên đường elip (E) có phương trình \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1\)
Khi thay đổi trên đoạn [0; 180] thì sin t° thay đổi trên đoạn [0; 1] và cos t° thay đổi trên đoạn [-1; 1].
\( \Rightarrow 4\cos t^\circ \in \;\left[ { – 4;4} \right]\) và \(3\sin t^\circ \in \;\left[ {0;{\rm{ }}3} \right].\)
Vậy quỹ đạo của vật thể (hay là tập hợp điểm M) là nửa đường elip (E) nằm trên trục hoành.