Giải chi tiết Vận dụng Bài 12. Số gần đúng và sai số (trang 76, 77) – SGK Toán 10 Kết nối tri thức. Gợi ý: Đánh giá sai số tương đối: \({\delta _a} \le \frac{d}{{\left| a \right|}}\.
Câu hỏi/Đề bài:
Các nhà vật lí sử dụng hai phương pháp khác nhau để đo tuổi của vũ trụ (đơn vị tỉ năm) lần lượt cho hai kết quả là: 13,807 \( \pm \) 0,026 và 13,799 \( \pm \) 0,021.
Hãy đánh giá sai số tương đối của mối phương pháp. Căn cứ trên tiêu chí này, phương pháp nào cho kết quả chính xác hơn?
Hướng dẫn:
– Đánh giá sai số tương đối: \({\delta _a} \le \frac{d}{{\left| a \right|}}\)
Với d là độ chính xác và a là số gần đúng.
– Nhận xét phương pháp nào cho kết quả chính xác hơn: \(\frac{d}{{\left| a \right|}}\) càng nhỏ thì chất lượng phép đo hay tính toán càng cao.
Lời giải:
Xét phương pháp 1: ta có d=0,026(tỉ năm); a=13,807 (tỉ năm)
\({\delta _5} \le \frac{{0,026}}{{\left| {13,807} \right|}} \approx 1,{88.10^{ – 3}} = 0,00188\)
Xét phương pháp 2: ta có d=0,021(tỉ năm); a=13,799 (tỉ năm)
\({\delta _5} \le \frac{{0,021}}{{\left| {13,799} \right|}} \approx 1,{52.10^{ – 3}} = 0,00152\)
Ta thấy \(0,00188 > 0,00152\) nên phương pháp 2 cho kết quả chính xác hơn.