Trang chủ Lớp 10 Toán lớp 10 SGK Toán 10 - Kết nối tri thức Luyện tập 4 Bài 20 (trang 37, 38, 39) Toán 10: Cho...

Luyện tập 4 Bài 20 (trang 37, 38, 39) Toán 10: Cho đường thẳng Δ : y= ax + b, vớia ne 0 . a) Chứng minh rằng Δ cắt trục hoành. b) Lập phương trình đường thẳng Δ _o

Đáp án Luyện tập 4 Bài 20. Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách (trang 37, 38, 39) – SGK Toán 10 Kết nối tri thức. Gợi ý: Xét hệ phương trình tọa độ giao điểm.

Câu hỏi/Đề bài:

Cho đường thẳng \(\Delta \): y= ax + b, với\(a \ne 0\) .

a) Chứng minh rằng \(\Delta \) cắt trục hoành.

b) Lập phương trình đường thẳng \({\Delta _o}\) đi qua O(0, 0) và song song (hoặc trùng) với\(\Delta \)

c) Hãy chỉ ra mối quan hệ giữa \({\alpha _\Delta }\) và \({\alpha _{{\Delta _o}}}\).

d) Gọi M là giao điểm của \({\Delta _o}\) với nửa đường tròn đơn vị và \({x_o}\) là hoành độ của M. Tính tung độ của M theo \({x_o}\) và a. Từ đó, chứng minh rằng \(\tan {\alpha _\Delta } = a\).

Hướng dẫn:

a) Xét hệ phương trình tọa độ giao điểm

b) Hai đường thẳng song có cùng vecto chỉ phương ( hoặc pháp tuyến)

d) Sử dụng đinh nghĩa hàm số tang

Lời giải:

a) Xét hệ phương trình: \(\left\{ \begin{array}{l}y = 0\\y = ax + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 0\\x = \frac{{ – b}}{a}\end{array} \right.\) . Vậy đường thẳng \(\Delta \) cắt trục hoành tại điểm \(\left( {\frac{{ – b}}{a};0} \right)\).

b) Phương trình đường thẳng \({\Delta _o}\) đi qua O(0, 0) và song song (hoặc trùng) với\(\Delta \) là \(y = a\left( {x – 0} \right) + 0 = {\rm{a}}x\).

c) Ta có: \({\alpha _\Delta } = {\alpha _{{\Delta _o}}}\).

d) Từ câu b) và điều kiện \(x_o^2 + y_o^2 = 1\) trong đó \({y_o}\) là tung độ của điểm M, ta suy ra \({x_o} \ne 0\). Do đó: \(\tan {\alpha _\Delta } = \tan {\alpha _{{\Delta _o}}} = \frac{{{y_o}}}{{{x_o}}} = a\).