Lời giải Luyện tập 2 Bài 6. Hệ thức lượng trong tam giác (trang 39, 40) – SGK Toán 10 Kết nối tri thức. Gợi ý: Bước 1: Tính sin\(\widehat C\), bằng cách áp dụng định lí sin tại đỉnh B và C.
Câu hỏi/Đề bài:
Cho tam giác ABC có b = 8, c = 5 và \(\widehat B = {80^o}\). Tính số đo các góc, bán kính đường tròn ngoại tiếp và độ dài cạnh còn lại của tam giác.
Hướng dẫn:
Bước 1: Tính sin\(\widehat C\), bằng cách áp dụng định lí sin tại đỉnh B và C. Từ đó suy ra số đo góc C.
Bước 2: Tính \(\widehat A\) và suy ra a dựa vào định lí sin.
Bước 3: Tính R.
Lời giải:
Áp dụng định lí sin cho tam giác ABC ta có:
\(\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = 2R\)
\(\begin{array}{l} \Rightarrow \sin C = \frac{{c.\sin B}}{b} = \frac{{5.\sin {{80}^o}}}{8} \approx 0,6155\\ \Leftrightarrow \widehat C \approx {38^o}\end{array}\)
Lại có: \(\widehat A = {180^o} – \widehat B – \widehat C = {180^o} – {80^o} – {38^o} = {62^o}\)
Theo định lí sin, ta suy ra \(a = \sin A.\dfrac{b}{{\sin B}} = \sin {62^o}\dfrac{8}{{\sin {{80}^o}}} \approx 7,17\)
Và \(2R = \dfrac{b}{{\sin B}} \Rightarrow R = \dfrac{b}{{2\sin B}} = \dfrac{8}{{2\sin {{80}^o}}} \approx 4,062.\)
Vậy tam giác ABC có \(\widehat A = {62^o}\); \(\widehat C \approx {38^o}\); \(a \approx 7,17\) và \(R \approx 4,062.\)