Sắp xếp số liệu theo thứ tự không giảm. So sánh khoảng biến thiên. Phân tích và giải Giải câu hỏi mở đầu trang 84 SGK Toán 10 tập 1 – Kết nối tri thức – Bài 14. Các số đặc trưng đo độ phân tán. Điểm trung bình môn học kì của An và Bình đều là 8,…
Đề bài/câu hỏi:
Dưới đây là điểm trung bình môn học kì I của hai bạn An và Bình
|
Toán |
Vật lí |
Hóa học |
Ngữ văn |
Lịch sử |
Địa lí |
Tin học |
Tiếng Anh |
An |
9,2 |
8,7 |
9,5 |
6,8 |
8,0 |
8,0 |
7,3 |
6,5 |
Bình |
8,2 |
8,1 |
8,0 |
7,8 |
8,3 |
7,9 |
7,6 |
8,1 |
Điểm trung bình môn học kì của An và Bình đều là 8,0 nhưng rõ ràng Bình “học đều” hơn An. Có thể dùng những số đặc trưng nào để đo mức độ “học đều”?
Hướng dẫn:
– Sắp xếp số liệu theo thứ tự không giảm.
– So sánh khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn của 2 mẫu số liệu
Lời giải:
Sắp xếp lại theo thứ tự không giảm:
Bạn An: 6,5 6,8 7,3 8,0 8,0 8,7 9,2 9,5
Bạn Bình: 7,6 7,8 7,9 8,0 8,1 8,1 8,2 8,3
+ So sánh theo khoảng biến thiên:
Bạn An: \({R_1} = 9,5 – 6,5 = 3\)
Bạn Bình: \({R_2} = 8,3 – 7,6 = 0,7\)
Ta thấy \({R_1} > {R_2}\) nên bạn Bình học đều hơn
+ So sánh theo khoảng tứ phân vị:
Bạn An: n=8
\({Q_1} = \frac{{6,8 + 7,3}}{2} = 7,05\), \({Q_4} = \frac{{8,7 + 9,2}}{2} = 8,95\)
Khoảng tứ phân vị là \({\Delta _Q} = {Q_3} – {Q_1} = 8,95 – 7,05 = 1,9\)
Bạn Bình: n=8
\(Q{‘_1} = \frac{{7,8 + 7,9}}{2} = 7,85\), \(Q{‘_3} = \frac{{8,1 + 8,2}}{2} = 8,15\)
Khoảng tứ phân vị
\(\Delta {‘_Q} = Q{‘_3} – Q{‘_1} = 8,15 – 7,85 = 0,3\)
=> Ta thấy \({\Delta _Q} > \Delta {‘_Q}\) nên bạn Bình học đều hơn
+ So sánh theo phương sai hoặc độ lệch chuẩn
Bạn An: \(\overline x = 8\)
Ta có bảng:
Giá trị |
Độ lệch |
Bình phương độ lệch |
6,5 |
-1,5 |
2,25 |
6,8 |
-1,2 |
1,44 |
7,3 |
-0,7 |
0,49 |
8 |
0 |
0 |
8 |
0 |
0 |
8,7 |
0,7 |
0,49 |
9,2 |
1,2 |
1,44 |
9,5 |
1,5 |
2,25 |
Tổng |
8,36 |
Phương sai là \({s_1}^2 = \frac{{8,36}}{8} = 1,045\)
Độ lệch chuẩn là \({s_1} = \sqrt {1,045} \approx 1,02\)
Bạn Bình: \(\overline x = 8\)
Ta có bảng:
Giá trị |
Độ lệch |
Bình phương độ lệch |
7,60 |
-0,40 |
0,16 |
7,80 |
-0,20 |
0,04 |
7,90 |
-0,10 |
0,01 |
8,00 |
0,00 |
0,00 |
8,10 |
0,10 |
0,01 |
8,10 |
0,10 |
0,01 |
8,20 |
0,20 |
0,04 |
8,30 |
0,30 |
0,09 |
Tổng |
0,36 |
Phương sai là \({s_2}^2 = \frac{{0,36}}{8} = 0,045\)
Độ lệch chuẩn là \({s_2} = \sqrt {0,045} \approx 0,21\)
Ta thấy \({s_2} < {s_1}\) nên bạn Bình học đều hơn