Đáp án Thực hành 5 Bài 2. Tổng và hiệu của hai vectơ (trang 92, 93) – SGK Toán 10 Chân trời sáng tạo. Gợi ý: Sử dụng tính chất trọng tâm của tam giác \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow.
Câu hỏi/Đề bài:
Cho hình bình hành ABCD có tâm O. Tìm ba điểm M, N, P thỏa mãn:
a) \(\overrightarrow {MA} + \overrightarrow {MD} + \overrightarrow {MB} = \overrightarrow 0 \)
b) \(\overrightarrow {ND} + \overrightarrow {NB} + \overrightarrow {NC} = \overrightarrow 0 \)
c) \(\overrightarrow {PM} + \overrightarrow {PN} = \overrightarrow 0 \)
Hướng dẫn:
a) Sử dụng tính chất trọng tâm của tam giác \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)(với G là trọng tâm của tam giác ABC)
b) Sử dụng tính chất trọng tâm của tam giác \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)
c) Sử dụng tính chất trung điểm \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \)(với M là trung điểm của AB)
Hướng dẫn:
a) Sử dụng tính chất trọng tâm của tam giác \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)(với G là trọng tâm của tam giác ABC)
b) Sử dụng tính chất trọng tâm của tam giác \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)
c) Sử dụng tính chất trung điểm \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \)(với M là trung điểm của AB)
Lời giải:
a) Áp dụng tính chất trọng tâm ta có: \(\overrightarrow {MA} + \overrightarrow {MD} + \overrightarrow {MB} = \overrightarrow 0 \)
Suy ra M là trọng tâm của tam giác ADB
Vậy M nằm trên đoạn thẳng AO sao cho \(AM = \frac{2}{3}AO\)
b) Tiếp tục áp dụng tính chất trọng tâm \(\overrightarrow {ND} + \overrightarrow {NB} + \overrightarrow {NC} = \overrightarrow 0 \)
Suy ra N là trọng tâm của tam giác BCD
Vậy N nằm trên đoạn thẳng OD sao cho \(ON = \frac{1}{3}OD\)
c) Áp dụng tính chất trung điểm ta có: \(\overrightarrow {PM} + \overrightarrow {PN} = \overrightarrow 0 \)
Suy ra P là trung điểm của đoạn thẳng MN
Vậy điểm P trùng với điểm O