Trang chủ Lớp 10 Toán lớp 10 SGK Toán 10 - Cánh diều Bài 8 trang 104 Toán 10 tập 2 – Cánh diều: Quan...

Bài 8 trang 104 Toán 10 tập 2 – Cánh diều: Quan sát hình 64 và thực hiện các hoạt động sau

Phương trình đường thẳng d đi qua hai điểm \(A\left( {{x_o};{y_o}} \right);B\left( {{x_1};{y_1}} \right)\) là. Giải và trình bày phương pháp giải Giải bài 8 trang 104 SGK Toán 10 tập 2 – Cánh diều – Bài tập cuối Chương 7. Quan sát hình 64 và thực hiện các hoạt động sau:…

Đề bài/câu hỏi:

Quan sát hình 64 và thực hiện các hoạt động sau:

a) Lập phương trình đường thẳng d

b) Lập phương trình đường tròn (C)

c) Lập phương trình tiếp tuyến của đường tròn \(\left( C \right)\) tại điểm \(M\left( {2 + \sqrt 2 ;1 + \sqrt 2 } \right)\)

Hướng dẫn:

a) Phương trình đường thẳng d đi qua hai điểm \(A\left( {{x_o};{y_o}} \right);B\left( {{x_1};{y_1}} \right)\) là: \(\frac{{x – {x_o}}}{{{x_1} – {x_o}}} = \frac{{y – {y_o}}}{{{y_1} – {y_o}}}\)

b) Đường tròn có tâm \(I\left( {a;b} \right)\) và bán kính R có phương trình là: \({\left( {x – a} \right)^2} + {\left( {y – b} \right)^2} = {R^2}\)

c) Cho điểm (\({M_o}\left( {{x_o};{\rm{ }}{y_o}} \right)\)) nằm trên đường tròn (C) tâm I(a; b) bán kính R. Gọi \(\Delta \) là tiếp tuyến tại điểm \({M_o}\left( {{x_o};{\rm{ }}{y_o}} \right)\) thuộc đường tròn. Khi đó phương trình tiếp tuyến \(\Delta \) là:

\(\left( {{x_o} – a} \right)\left( {x – {x_o}} \right) + \left( {{y_o} – b} \right)\left( {y – {y_o}} \right) = 0\)

Lời giải:

a) Đường thẳng d đi qua hai điểm \(\left( { – 1;1} \right)\) và \(\left( {2;3} \right)\) nên phương trình đường thẳng d là: \(\frac{{x + 1}}{{2 + 1}} = \frac{{y – 1}}{{3 – 1}} \Leftrightarrow 2x – 3y + 5 = 0\)

b) Phương trình đường tròn (C) có tâm \(I\left( {2;1} \right)\) và \(R = 2\) là: \({\left( {x – 2} \right)^2} + {\left( {y – 1} \right)^2} = 4\)

c) Gọi \({d_1}\) là tiếp tuyến của đường tròn (C) tại điểm \(M\left( {2 + \sqrt 2 ;1 + \sqrt 2 } \right)\)

Ta có: \(\overrightarrow {{n_{{d_1}}}} = \overrightarrow {IM} = \left( {\sqrt 2 ;\sqrt 2 } \right)\). Vậy phương trình đường thẳng \({d_1}\) là:

\(\sqrt 2 \left( {x – 2 – \sqrt 2 } \right) + \sqrt 2 \left( {y – 1 – \sqrt 2 } \right) = 0 \Leftrightarrow x + y – 3 – 2\sqrt 2 = 0\)