Trang chủ Lớp 10 Toán lớp 10 SGK Toán 10 - Cánh diều Bài 1 trang 71 Toán 10 tập 1 – Cánh diều: Cho...

Bài 1 trang 71 Toán 10 tập 1 – Cánh diều: Cho tam giác ABC có AB = 3, 5;;AC = 7, 5;;∠ A = 135^o. Tính độ dài cạnh BC và bán kính R của đường tròn ngoại tiếp tam giác (làm

Bước 1: Tính BC, bằng cách áp dụng định lí cosin trong tam giác ABC: \({a^2} = {b^2} + {c^2} – 2bc. \cos A\. Phân tích, đưa ra lời giải Giải bài 1 trang 71 SGK Toán 10 tập 1 – Cánh diều – Bài 1. Giá trị lượng giác của một góc từ 0 đến 180. Định lí cosin và định lí sin trong tam giác. Cho tam giác ABC có AB = 3,5;AC = 7,5 A = 135 Tính độ dài cạnh BC và bán…

Đề bài/câu hỏi:

Cho tam giác ABC có \(AB = 3,5;\;AC = 7,5;\;\widehat A = {135^o}.\) Tính độ dài cạnh BC và bán kính R của đường tròn ngoại tiếp tam giác (làm tròn kết quả đến hàng phần mười).

Hướng dẫn:

Bước 1: Tính BC, bằng cách áp dụng định lí cosin trong tam giác ABC:

\({a^2} = {b^2} + {c^2} – 2bc.\cos A\)

Bước 2: Tính R, dựa vào định lí sin trong tam giác ABC:

\(\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2.\sin A}}\)

Lời giải:

Áp dụng định lí cosin trong tam giác ABC ta có:

\(B{C^2} = A{C^2} + A{B^2} – 2AC.AB.\cos A\)

\(\begin{array}{l} \Leftrightarrow B{C^2} = 7,{5^2} + 3,{5^2} – 2.7,5.3,5.\cos {135^o}\\ \Leftrightarrow B{C^2} \approx 105,6\\ \Leftrightarrow BC \approx 10,3\end{array}\)

Áp dụng định lí sin trong tam giác ABC ta có: \(\frac{{BC}}{{\sin A}} = 2R\)

\( \Rightarrow R = \frac{{BC}}{{2.\sin A}} = \frac{{10,3}}{{2.\sin {{135}^o}}} \approx 7,3\)