\(\frac{1}{{f\left( x \right)}}\) xác định \( \Leftrightarrow f\left( x \right) \ne 0\) \(\frac{1}{{\sqrt {f\left( x \right)} }}\. Trả lời Giải bài 1 trang 60 SGK Toán 10 tập 1 – Cánh diều – Bài tập cuối Chương 3. Tìm tập xác định của mỗi hàm số sau:…
Đề bài/câu hỏi:
Tìm tập xác định của mỗi hàm số sau:
a) \(y = \frac{1}{{{x^2} – x}}\)
b) \(y = \sqrt {{x^2} – 4x + 3} \)
c) \(y = \frac{1}{{\sqrt {x – 1} }}\)
Hướng dẫn:
\(\frac{1}{{f\left( x \right)}}\) xác định \( \Leftrightarrow f\left( x \right) \ne 0\)
\(\frac{1}{{\sqrt {f\left( x \right)} }}\) xác định \( \Leftrightarrow f\left( x \right) > 0\)
\(\sqrt {f\left( x \right)} \) xác định \( \Leftrightarrow f\left( x \right) \ge 0\)
Lời giải:
a) \(y = \frac{1}{{{x^2} – x}}\) xác định \( \Leftrightarrow {x^2} – x \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne 1\end{array} \right.\)
Tập xác định \(D = \mathbb{R}\backslash \left\{ {0;1} \right\}\)
b) \(y = \sqrt {{x^2} – 4x + 3} \) xác định \( \Leftrightarrow {x^2} – 4x + 3 \ge 0 \Leftrightarrow \left\{ \begin{array}{l}x \ge 3\\x \le 1\end{array} \right.\)
Tập xác định \(D = \left( { – \infty ;1} \right] \cup \left[ {3; + \infty } \right)\)
c) \(y = \frac{1}{{\sqrt {x – 1} }}\) xác định \( \Leftrightarrow x – 1 > 0 \Leftrightarrow x > 1\)
Tập xác định \(D = \left( {1; + \infty } \right)\)