Trang chủ Lớp 10 Toán lớp 10 SBT Toán 10 - Chân trời sáng tạo Bài 7 trang 10 SBT toán 10 – Chân trời sáng tạo:...

Bài 7 trang 10 SBT toán 10 – Chân trời sáng tạo: Chứng minh rằng a) 2x^2 + √3 x + 1 > 0 với mọi x ∈ R b) x^2 + x + 1/4 ≥ 0

Gợi ý giải Giải bài 7 trang 10 SBT toán 10 – Chân trời sáng tạo – Bài 1. Dấu của tam thức bậc hai. Chứng minh rằng a) \(2{x^2} + \sqrt 3 x + 1 > 0\) với mọi \(x \in \mathbb{R}\…

Đề bài/câu hỏi:

Chứng minh rằng

a) \(2{x^2} + \sqrt 3 x + 1 > 0\) với mọi \(x \in \mathbb{R}\)

b) \({x^2} + x + \frac{1}{4} \ge 0\) với mọi \(x \in \mathbb{R}\)

c) \( – {x^2} < – 2x + 3\) với mọi \(x \in \mathbb{R}\)

Lời giải:

a) Tam thức \(2{x^2} + \sqrt 3 x + 1\) có \(\Delta = {\left( {\sqrt 3 } \right)^2} – 4.2 = – 5 0\)

Suy ra \(2{x^2} + \sqrt 3 x + 1 > 0\forall x \in \mathbb{R}\) (đpcm)

b) Tam thức \({x^2} + x + \frac{1}{4}\) có \(\Delta = {1^2} – 4.\frac{1}{4} = 0\), có nghiệm kép \(x = – \frac{1}{2}\) và \(a = 1 > 0\)

Suy ra \({x^2} + x + \frac{1}{4} \ge 0\) với mọi \(x \in \mathbb{R}\) (đpcm)

c) \( – {x^2} 0\) với mọi \(x \in \mathbb{R}\)

Xét tam thức \({x^2} – 2x + 3\) ta có \(\Delta = {\left( { – 2} \right)^2} – 4.3 = – 8 0\)

Suy ra \({x^2} – 2x + 3 > 0\) với mọi \(x \in \mathbb{R}\)\( \Leftrightarrow – {x^2} < – 2x + 3\) (đpcm)