Gợi ý giải Giải bài 4 trang 81 sách bài tập toán 10 – Chân trời sáng tạo – Bài tập cuối Chương 4. Diện tích tam giác ABC b) Bán kính đường tròn ngoại tiếp và bán kính đường tròn nội tiếp tam…
Đề bài/câu hỏi:
Cho \(\Delta ABC\) có \(\widehat A = 99^\circ ,b = 6,c = 10\). Tính:
a) Diện tích tam giác ABC
b) Bán kính đường tròn ngoại tiếp và bán kính đường tròn nội tiếp tam giác ABC
Lời giải:
a) Áp dụng định lí sin vào tam giác ABC ta có:
\({S_{ABC}} = \frac{1}{2}bc\sin A = \frac{1}{2}.6.10.\sin 99^\circ \simeq 29,63\) (đvdt)
b) Áp dụng định lí côsin ta tính được:
\(a = \sqrt {{b^2} + {c^2} – 2bc\cos A} = \sqrt {{6^2} + {{10}^2} – 2.6.10\cos 99^\circ } \simeq 12,44\)
Bán kính đường tròn ngoại tiếp tam giác ABC là:
\(R = \frac{{abc}}{{4S}} \simeq \frac{{12,44.6.10}}{{4.29,63}} \simeq 6,25\)
Bán kính đường tròn nội tiếp tam giác là:
\(r = \frac{S}{p} = \frac{{29,63}}{{\frac{{\left( {12,44 + 6 + 10} \right)}}{2}}} \simeq 2,084\)