Trang chủ Lớp 10 Toán lớp 10 SBT Toán 10 - Chân trời sáng tạo Bài 3 trang 79 SBT toán 10 – Chân trời sáng tạo:...

Bài 3 trang 79 SBT toán 10 – Chân trời sáng tạo: Để xác định chiều cao của một tòa nhà cao tầng, một người đứng tại điểm M

Lời giải bài tập, câu hỏi Giải bài 3 trang 79 sách bài tập toán 10 – Chân trời sáng tạo – Bài 3. Giải tam giác và ứng dụng thực tế. Để xác định chiều cao của một tòa nhà cao tầng, một người đứng tại điểm M,…

Đề bài/câu hỏi:

Để xác định chiều cao của một tòa nhà cao tầng, một người đứng tại điểm M, sử dụng giác kế nhìn thấy đỉnh tòa nhà với góc nâng \(\widehat {RQA} = 79^\circ \), người đó lùi ra xa một khoảng cách \(LM = 50\) m thì nhìn thấy đỉnh tòa nhà với góc nâng \(\widehat {RPA} = 65^\circ \). Hãy tính chiều cao của tòa nhà, biết rằng khoảng cách từ mặt đất đến ống ngắm của giác kế đó là \(PL = QM = 1,4\) m (hình 6)

Lời giải:

Ta có chiều cao của nhà cao tầng là \(AO = AR + RO = AR + 1,4\)

Góc \(\widehat {AQR}\) là góc ngoài của tam giác APQ tại đỉnh Q suy ra \(\widehat {AQR} = \widehat {APQ} + \widehat {QAP} \Rightarrow \widehat {QAP} = \widehat {AQR} – \widehat {APQ} = 79^\circ – 65^\circ = 14^\circ \)

Áp dụng định lí sin vào tam giác APQ ta có:

\(\frac{{PQ}}{{\sin \widehat {PAQ}}} = \frac{{AQ}}{{\sin \widehat {APQ}}} = \frac{{50}}{{\sin 14^\circ }} \Rightarrow AQ = \frac{{50}}{{\sin 14^\circ }}.\sin 65^\circ \)

Xét tam giác AQR ta có:

\(\frac{{AR}}{{\sin \widehat {AQR}}} = \frac{{AQ}}{{\sin \widehat {ARQ}}} = \frac{{\frac{{50}}{{\sin 14^\circ }}.\sin 65^\circ }}{{\sin 90^\circ }} \Rightarrow AR = \frac{{\frac{{50}}{{\sin 14^\circ }}.\sin 65^\circ }}{{\sin 90^\circ }}.\sin 79^\circ \simeq 183,87\)

\( \Rightarrow AO \simeq 183,87 + 1,4 = 185,27\)

Vậy tòa nhà cao xấp xỉ 185,27 m