Trang chủ Lớp 10 Toán lớp 10 SBT Toán 10 - Chân trời sáng tạo Bài 2 trang 129 SBT toán 10 – Chân trời sáng tạo:...

Bài 2 trang 129 SBT toán 10 – Chân trời sáng tạo: Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lên (nếu có) của mỗi mẫu số liệu cho bởi bảng tần số sau

Sắp xếp số liệu theo thứ tự không giảm và tìm khoảng biến thiên theo công thức\(R = {x_n} – {x_1}\. Gợi ý giải Giải bài 2 trang 129 sách bài tập toán 10 – Chân trời sáng tạo – Bài 4. Các số đặc trưng đo mức độ phân tán của mẫu số liệu. Hãy tìm phương sai, khoảng biến thiên,…

Đề bài/câu hỏi:

Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lên (nếu có) của mỗi mẫu số liệu cho bởi bảng tần số sau:

a)

Giá trị

0

4

6

9

10

17

Tần số

1

3

5

4

2

1

b)

Giá trị

2

23

24

25

26

27

Tần số

1

6

8

9

4

2

Hướng dẫn:

Sắp xếp số liệu theo thứ tự không giảm và tìm khoảng biến thiên theo công thức\(R = {x_n} – {x_1}\)

Dùng kiến thức khoảng biến thiên và khoảng tứ phân vị, giá trị ngoại lệ đã học.

Tìm phương sai theo công thức \({S^2} = \frac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + … + {n_k}{x_k}^2} \right) – {\overline x ^2}\)

Lời giải:

a)

+ Số cao nhất và thấp nhất lần lượt là 17 và 0 do đó khoảng biến thiên của dãy số liệu trên là: \(R = 17 – 0 = 17\)

+ Mẫu có 16 số liệu

+ Tứ phân vị: \({Q_2} = \left( {6 + 6} \right):2 = 6\); \({Q_1} = \left( {4 + 6} \right):2 = 5;{Q_3} = 9 \Rightarrow \Delta Q = {Q_3} – {Q_1} = 4\)

+ Ta có \({Q_1} – 1,5.{\Delta _Q} = 5 – 1,5.4 = – 1\) và \({Q_3} + 1,5.{\Delta _Q} = 9 + 1,5.4 = 15\) nên mẫu có 1 giá trị ngoại lệ là 17;

Trung bình của mẫu số liệu là \(\overline x = 7,18\)

Phương sai: \({S^2} = 13,40\)

b)

+ Số cao nhất và thấp nhất lần lượt là 27 và 2 do đó khoảng biến thiên của dãy số liệu trên là: \(R = 27 – 2 = 25\)

+ Mẫu có 30 số liệu

+ Tứ phân vị: \({Q_2} = \left( {24 + 25} \right):2 = 24,5\); \({Q_1} = 24;{Q_3} = 25 \Rightarrow \Delta Q = {Q_3} – {Q_1} = 1\)

+ Ta có \({Q_1} – 1,5.{\Delta _Q} = 24 – 1,5.1 = 22,5\) và \({Q_3} + 1,5.{\Delta _Q} = 25 + 1,5.1 = 26,5\) nên mẫu có giá trị ngoại lệ là 2 và 27.

Trung bình của mẫu số liệu là \(\overline x = 23,83\)

Phương sai: \({S^2} = 17,74\)