Sắp xếp số liệu theo thứ tự không giảm và tìm khoảng biến thiên theo công thức\(R = {x_n} – {x_1}\. Gợi ý giải Giải bài 2 trang 129 sách bài tập toán 10 – Chân trời sáng tạo – Bài 4. Các số đặc trưng đo mức độ phân tán của mẫu số liệu. Hãy tìm phương sai, khoảng biến thiên,…
Đề bài/câu hỏi:
Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lên (nếu có) của mỗi mẫu số liệu cho bởi bảng tần số sau:
a)
Giá trị |
0 |
4 |
6 |
9 |
10 |
17 |
Tần số |
1 |
3 |
5 |
4 |
2 |
1 |
b)
Giá trị |
2 |
23 |
24 |
25 |
26 |
27 |
Tần số |
1 |
6 |
8 |
9 |
4 |
2 |
Hướng dẫn:
Sắp xếp số liệu theo thứ tự không giảm và tìm khoảng biến thiên theo công thức\(R = {x_n} – {x_1}\)
Dùng kiến thức khoảng biến thiên và khoảng tứ phân vị, giá trị ngoại lệ đã học.
Tìm phương sai theo công thức \({S^2} = \frac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + … + {n_k}{x_k}^2} \right) – {\overline x ^2}\)
Lời giải:
a)
+ Số cao nhất và thấp nhất lần lượt là 17 và 0 do đó khoảng biến thiên của dãy số liệu trên là: \(R = 17 – 0 = 17\)
+ Mẫu có 16 số liệu
+ Tứ phân vị: \({Q_2} = \left( {6 + 6} \right):2 = 6\); \({Q_1} = \left( {4 + 6} \right):2 = 5;{Q_3} = 9 \Rightarrow \Delta Q = {Q_3} – {Q_1} = 4\)
+ Ta có \({Q_1} – 1,5.{\Delta _Q} = 5 – 1,5.4 = – 1\) và \({Q_3} + 1,5.{\Delta _Q} = 9 + 1,5.4 = 15\) nên mẫu có 1 giá trị ngoại lệ là 17;
Trung bình của mẫu số liệu là \(\overline x = 7,18\)
Phương sai: \({S^2} = 13,40\)
b)
+ Số cao nhất và thấp nhất lần lượt là 27 và 2 do đó khoảng biến thiên của dãy số liệu trên là: \(R = 27 – 2 = 25\)
+ Mẫu có 30 số liệu
+ Tứ phân vị: \({Q_2} = \left( {24 + 25} \right):2 = 24,5\); \({Q_1} = 24;{Q_3} = 25 \Rightarrow \Delta Q = {Q_3} – {Q_1} = 1\)
+ Ta có \({Q_1} – 1,5.{\Delta _Q} = 24 – 1,5.1 = 22,5\) và \({Q_3} + 1,5.{\Delta _Q} = 25 + 1,5.1 = 26,5\) nên mẫu có giá trị ngoại lệ là 2 và 27.
Trung bình của mẫu số liệu là \(\overline x = 23,83\)
Phương sai: \({S^2} = 17,74\)