Phương trình Elip có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) có hai tiêu điểm \({F_1}\left( { – c;0} \right). Phân tích, đưa ra lời giải Giải bài 1 trang 75 sách bài tập toán 10 – Chân trời sáng tạo – Bài 4. Ba đường conic trong mặt phẳng tọa độ. Viết phương trình chính tắc của:…
Đề bài/câu hỏi:
Viết phương trình chính tắc của:
a) Elip có trục lớn bằng 12 và trục nhỏ bằng 8
b) Hypebol có tiêu cự \(2c = 18\) và độ dài trục thực \(2a = 14\)
c) Parabol có tiêu điểm \(F\left( {5;0} \right)\)
Hướng dẫn:
Phương trình Elip có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) có hai tiêu điểm \({F_1}\left( { – c;0} \right),{F_2}\left( {c;0} \right)\)và có tiêu cự là \(2c\) với \(c = \sqrt {{a^2} – {b^2}} \)
Phương trình Hypebol có dạng \(\frac{{{x^2}}}{{{a^2}}} – \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) có hai tiêu điểm \({F_1}\left( { – c;0} \right),{F_2}\left( {c;0} \right)\)và có tiêu cự là \(2c\) với \(c = \sqrt {{a^2} + {b^2}} \)
Parabol \(\left( P \right)\) có dạng \({y^2} = 2px\) với \(p > 0\) có tiêu điểm \(F\left( {\frac{p}{2};0} \right)\)
Lời giải:
a) Trục lớn 2a=12, trục nhỏ 8=2b
\( \Rightarrow \left\{ \begin{array}{l}a = 6\\b = 4\end{array} \right. \Rightarrow PTCT:\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{16}} = 1\)
b) tiêu cự \(2c = 18 \Rightarrow c = 9\), trục thực \(2a = 14 \Rightarrow a = 7\)
\(c = \sqrt {{a^2} + {b^2}} \Rightarrow {b^2} = {c^2} – {a^2} = 32 \Rightarrow \frac{{{x^2}}}{{49}} – \frac{{{y^2}}}{{32}} = 1\)
c) Parabol có tiêu điểm \(F\left( {5;0} \right) = \left( {\frac{p}{2};0} \right) \Rightarrow p = 10 \Rightarrow {y^2} = 20x\)