Tách các vectơ \(\overrightarrow {OA} , \overrightarrow {OB} \) sao cho xuất hiện vectơ \(\overrightarrow {OI} \. Gợi ý giải Giải bài 75 trang 107 SBT toán 10 – Cánh diều – Bài tập cuối Chương 4. Cho ba điểm phân biệt I, A, B và số thực k ≠ 1 thoả mãn \(\overrightarrow {IA} = k\overrightarrow…
Đề bài/câu hỏi:
Cho ba điểm phân biệt I, A, B và số thực k ≠ 1 thoả mãn \(\overrightarrow {IA} = k\overrightarrow {IB} \). Chứng minh rằng với O là điểm bất kì ta có:
\(\overrightarrow {OI} = \left( {\frac{1}{{1 – k}}} \right)\overrightarrow {OA} – \left( {\frac{k}{{1 – k}}} \right)\overrightarrow {OB} \) (*)
Hướng dẫn:
Tách các vectơ \(\overrightarrow {OA} ,\overrightarrow {OB} \) sao cho xuất hiện vectơ \(\overrightarrow {OI} \) và kết hợp giả thiết để biến đổi vế phải (*)
Lời giải:
Theo giả thiết, \(\overrightarrow {IA} = k\overrightarrow {IB} \)
Xét vế phải (*) ta có:
VT = \(\left( {\frac{1}{{1 – k}}} \right)\overrightarrow {OA} – \left( {\frac{k}{{1 – k}}} \right)\overrightarrow {OB} = \left( {\frac{1}{{1 – k}}} \right)\left( {\overrightarrow {OI} + \overrightarrow {IA} } \right) – \left( {\frac{k}{{1 – k}}} \right)\left( {\overrightarrow {OI} + \overrightarrow {IB} } \right)\)
\( = \left( {\frac{1}{{1 – k}}} \right)\overrightarrow {OI} + \left( {\frac{1}{{1 – k}}} \right)\overrightarrow {IA} – \left( {\frac{k}{{1 – k}}} \right)\overrightarrow {OI} – \left( {\frac{k}{{1 – k}}} \right)\overrightarrow {IB} \) \( = \left( {\frac{1}{{1 – k}} – \frac{k}{{1 – k}}} \right)\overrightarrow {OI} + \left( {\frac{1}{{1 – k}}} \right).k\overrightarrow {IB} – \left( {\frac{k}{{1 – k}}} \right)\overrightarrow {IB} \)
\( = \overrightarrow {OI} + \left( {\frac{1}{{1 – k}}} \right).k\overrightarrow {IB} – \left( {\frac{k}{{1 – k}}} \right)\overrightarrow {IB} = \overrightarrow {OI} + \left( {\frac{k}{{1 – k}} – \frac{k}{{1 – k}}} \right)\overrightarrow {IB} \) \( = \overrightarrow {OI} \) (ĐPCM)