Trang chủ Lớp 10 Toán lớp 10 SBT Toán 10 - Cánh diều Bài 48 trang 50 SBT toán 10 – Cánh diều: Có 3...

Bài 48 trang 50 SBT toán 10 – Cánh diều: Có 3 khách hàng (không quen biết nhau) cùng đến một cửa hàng có 5 quầy phục vụ khác nhau

Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức. Trả lời Giải bài 48 trang 50 sách bài tập toán 10 – Cánh diều – Bài tập cuối Chương 6. Có 3 khách hàng (không quen biết nhau) cùng đến một cửa hàng có 5 quầy phục vụ khác nhau….

Đề bài/câu hỏi:

Có 3 khách hàng (không quen biết nhau) cùng đến một cửa hàng có 5 quầy phục vụ khác nhau. Tính xác suất để có 2 khách hàng cùng vào 1 quầy và khách hàng còn lại vào quầy khác.

Hướng dẫn:

Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \)

Lời giải:

+ Mỗi khách hàng có 5 cách chọn quầy \( \Rightarrow n\left( \Omega \right) = 5.5.5 = 125\)

+ Gọi A là biến cố “2 khách hàng cùng vào 1 quầy và khách hàng còn lại vào quầy khác”

+ Số cách chọn 2 khách hàng là \(C_3^2 = 3\). Số cách chọn quầy cho 2 khách hàng đó là 5

+ Số cách chọn quầy cho khách hàng còn lại là 4 \( \Rightarrow n\left( A \right) = 3.5.4 = 60\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{60}}{{125}} = \frac{{12}}{{25}}\)