Lời giải Luyện tập 1 Bài 2. Ứng dụng của hệ phương trình bậc nhất ba ẩn (trang 15, 16, 17, 18) – Chuyên đề học tập Toán 10 Kết nối tri thức. Hướng dẫn: Bước 1: Lập hệ phương trình.
Câu hỏi/Đề bài:
Cân bằng phản ứng hóa học đốt cháy octane trong oxygen.
\({C_{18}}{H_{18}} + {O_2} \to C{O_2} + {H_2}O\)
Hướng dẫn:
Bước 1: Lập hệ phương trình
+ Chọn ẩn và đặt điều kiện cho ẩn
+ Biểu diễn các đại lượng chưa biết theo ẩn và đại lượng đã biết
+ Lập các phương trình biểu thị mối quan hệ giữa các đại lượng
Bước 2: Giải hệ phương trình
Bước 3: Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thích hợp với bài toán và kết luận.
Lời giải:
Giả sử x, y, z, t là bốn số nguyên dương thỏa mãn cân bằng phản ứng
\(x{C_{8}}{H_{18}} + y{O_2} \to zC{O_2} + t{H_2}O\)
Vì số nguyên tử carbon, hydrogen và oxygen ở hai vế phải bằng nhau nên ta có hệ
\(\left\{ \begin{array}{l}8x = z\\18x = 2t\\2y = 2z + t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}8\frac{x}{t} = \frac{z}{t}\\18\frac{x}{t} = 2\\2\frac{y}{t} = 2\frac{z}{t} + 1\end{array} \right.\)
Đặt \(X = \frac{x}{t};Y = \frac{y}{t};Z = \frac{z}{t}\) ta được hệ phương trình bậc nhất ba ẩn
\(\left\{ \begin{array}{l}8X = Z\\18X = 2\\2Y = 2Z + 1\end{array} \right.\) hay \(\left\{ \begin{array}{l}8X – Z = 0\\18X = 2\\2Y – 2Z = 1\end{array} \right.\)
Dùng máy tính cầm tay giải hệ sau cùng ta được \(X = \frac{1}{9},Y = \frac{25}{18},Z = \frac{8}{9}\). Từ đây suy ra \(x=\frac{t}{9};y=\frac{25t}{18};z=\frac{8t}{9}\). Chọn \(t = 18\) ta được \(x = 2,y = 25,z = 16\).
Từ đó ta được phương trình cân bằng
\(2{C_{8}}{H_{18}} + 25{O_2} \to 16C{O_2} + 18{H_2}O\)